Quantum fully homomorphic encryption scheme based on universal quantum circuit

نویسنده

  • Min Liang
چکیده

Fully homomorphic encryption enables arbitrary computation on encrypted data without decrypting the data. Here it is studied in the context of quantum information processing. Based on universal quantum circuit, we present a quantum fully homomorphic encryption (QFHE) scheme, which permits arbitrary quantum transformation on an encrypted data. The QFHE scheme is proved to be perfectly secure. In the scheme, the decryption key is different from the encryption key, however, the encryption key cannot be public. Moreover, the evaluate algorithm of the scheme is independent of the encryption key, so it is very applicable in delegated quantum computing between two parties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Homomorphic Encryption for Circuits of Low T-gate Complexity

Fully homomorphic encryption is an encryption method with the property that any computation on the plaintext can be performed by a party having access to the ciphertext only. Here, we formally define and give schemes for quantum homomorphic encryption, which is the encryption of quantum information such that quantum computations can be performed given the ciphertext only. Our schemes allow for ...

متن کامل

Quantum Homomorphic Encryption for Polynomial-Sized Circuits

We present a new scheme for quantum homomorphic encryption which is compact and allows for efficient evaluation of arbitrary polynomial-sized quantum circuits. Building on the framework of Broadbent and Jeffery [BJ15] and recent results in the area of instantaneous non-local quantum computation [Spe15], we show how to construct quantum gadgets that allow perfect correction of the errors which o...

متن کامل

Limitations on Transversal Computation through Quantum Homomorphic Encryption

Transversality is a simple and effective method for implementing quantum computation faulttolerantly. However, no quantum error-correcting code (QECC) can transversally implement a quantum universal gate set (Eastin and Knill, Phys. Rev. Lett., 102, 110502). Since reversible classical computation is often a dominating part of useful quantum computation, whether or not it can be implemented tran...

متن کامل

Quantum Fully Homomorphic Encryption with Verification

Fully-homomorphic encryption (FHE) enables computation on encrypted data while maintaining secrecy. Recent research has shown that such schemes exist even for quantum computation. Given the numerous applications of classical FHE (zero-knowledge proofs, secure two-party computation, obfuscation, etc.) it is reasonable to hope that quantum FHE (or QFHE) will lead to many new results in the quantu...

متن کامل

Classical Homomorphic Encryption for Quantum Circuits

We present a computationally secure classical homomorphic encryption scheme for quantum circuits. The scheme allows a classical server to blindly delegate a quantum computation to a quantum server; the server is able to run the computation without learning about the computation itself. This result relies on postquantum classical cryptographic tools, including sub-exponentially secure indistingu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Quantum Information Processing

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2015